5 research outputs found

    Voting: You Can’t Have Privacy without Individual Verifiability

    Get PDF
    International audienceElectronic voting typically aims at two main security goals: vote privacy and verifiability. These two goals are often seen as antagonistic and some national agencies even impose a hierarchy between them: first privacy, and then verifiability as an additional feature. Verifiability typically includes individual verifiability (a voter can check that her ballot is counted); universal verifiability (anyone can check that the result corresponds to the published ballots); and eligibility verifiability (only legitimate voters may vote). We show that actually, privacy implies individual verifiability. In other words, systems without individual verifiability cannot achieve privacy (under the same trust assumptions). To demonstrate the generality of our result, we show this implication in two different settings, namely cryptographic and symbolic models, for standard notions of privacy and individual verifiability. Our findings also highlight limitations in existing privacy definitions in cryptographic settings

    Security Analysis of India’s Electronic Voting Machines

    No full text
    Elections in India are conducted almost exclusively using electronic voting machines developed over the past two decades by a pair of government-owned companies. These devices, known in India as EVMs, have been praised for their simple design, ease of use, and reliability, but recently they have also been criticized following widespread reports of election irregularities. Despite this criticism, many details of the machines’ design have never been publicly disclosed, and they have not been subjected to a rigorous, independent security evaluation. In this paper, we present a security analysis of a real Indian EVM obtained from an anonymous source. We describe the machine’s design and operation in detail, and we evaluate its security in light of relevant election procedures. We conclude that in spite of the machines ’ simplicity and minimal software trusted computing base, they are vulnerable to serious attacks that can alter election results and violate the secrecy of the ballot. We demonstrate two attacks, implemented using custom hardware, which could be carried out by dishonest election insiders or other criminals with only brief physical access to the machines. This case study carries important lessons for Indian elections and for electronic voting security more generally
    corecore